2007 Vol. 9, No. 13 2549-2552

Ring-Closing Reaction of Allenic/ Propargylic Anions Generated by Base Treatment of Sulfonylallenes

Shinji Kitagaki, Satoshi Teramoto, and Chisato Mukai*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan cmukai@kenroku.kanazawa-u.ac.jp

Received April 20, 2007

ABSTRACT

EWG = SO₂Ph, COPh, CO₂Me; E⁺ = CH₂X, CHO, CH=CHCO₂Me

The intramolecular trapping of allenyl/propargyl anions generated by base treatment of sulfonylallenes was investigated. Treatment of 1-(ω -iodoalkyl)-1-(phenylsulfonyl)allenes with TBAF or NaH in DMF efficiently produced three- to seven-membered 1-ethynyl-1-(phenylsulfonyl) substituted carbocycles. The allenyl/propargyl anions could also be intramolecularly trapped using a terminal aldehyde or α , β -unsaturated ester. The phenylsulfonyl group was found to be replaced by other electron-withdrawing functionalities like ketone and ester groups but not by an alkyl group for this novel ring-closing reaction.

It is well-known that the γ -proton of an allyl functionality possessing an electron-withdrawing group (EWG) at the α-position is acidic enough to be abstracted by strong amide bases, such as lithium diisopropylamide (LDA), at low temperature. The allyl anion species, thus generated, could be used for a variety of carbon-carbon bond formations, exemplified by the vinylogous aldol reaction, in organic synthesis. On the other hand, the γ -allenic proton having an EWG at the α -position, namely the proton of the sp²hybridized carbon of the 1-EWG-allene species, would be anticipated to be more acidic than that of the sp³-hybridized carbon of the 1-EWG-allyl species owing to the following two factors. One is that the C-H σ bond of the γ -carbon is strictly eclipsed by the π bond between the α - and β -carbons, thereby introduction of an EWG at the α-position would markedly increase its acidity, and the other factor is an inherently higher s character of the allenic γ -carbon (sp²hybridized carbon) than the allylic carbon (sp³-hybridized carbon).

As a part of our studies² on the development of novel and efficient methods for ring-closing reactions by taking advantage of the intrinsic property of allenes, we have demonstrated that allenes 1 having an EWG and an ω -hydroxyalkyl group at the same allenic terminus easily underwent the endo—dig mode ring-closing reaction to produce the five-to eight-membered oxacycles 2 (Scheme 1).^{2a,f,n} We now envisaged, on the basis of the above prediction regarding the acidity of the γ -allenic proton having an EWG at the α -position, that replacing the terminal hydroxy group of 1

(2) (a) Mukai, C.; Yamashita, H.; Hanaoka, M. Org. Lett. 2001, 3, 3385–3387. (b) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755–1758. (c) Mukai, C.; Ukon, R.; Kuroda, N. Tetrahedron Lett. 2003, 44, 1583–1586. (d) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. Tetrahedron Lett. 2004, 45, 4117–4121. (e) Mukai, C.; Kobayashi, M.; Kubota, S.; Takahashi, Y.; Kitagaki, S. J. Org. Chem. 2004, 69, 2128–2136. (f) Mukai, C.; Ohta, M.; Yamashita, H.; Kitagaki, S. J. Org. Chem. 2004, 69, 6867–6873. (g) Mukai, C.; Kuroda, N.; Ukon, R.; Itoh, R. J. Org. Chem. 2005, 70, 6282–6290. (h) Mukai, C.; Takahashi, Y. Org. Lett. 2005, 7, 5793–5796. (i) Kitagaki, S.; Ohdachi, K.; Katoh, K.; Mukai, C. Org. Lett. 2006, 8, 95–98. (j) Inagaki, F.; Mukai, C. Org. Lett. 2006, 8, 1843–1845. (l) Kitagaki, S.; Okumura, Y.; Mukai, C. Tetrahedron Lett. 2006, 47, 1849–1852. (m) Mukai, C.; Itoh, R. Tetrahedron Lett. 2006, 47, 3971–3974. (n) Kitagaki, S.; Shibata, D.; Mukai, C. Tetrahedron Lett. 2007, 48, 1735–1738.

⁽¹⁾ For reviews, see: (a) Denmark, S. E.; Heemstra, J. R., Jr.; Beutner, G. L. *Angew. Chem., Int. Ed.* **2005**, *44*, 4682–4698. (b) Kalesse, M. *Top. Curr. Chem.* **2005**, *244*, 43–76. (c) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. *Chem. Rev.* **2000**, *100*, 1929–1972.

Scheme 1. Ring-Closing Reaction of Electron-Withdrawing Group Substituted Allenes 1

$$\begin{array}{c|c} EWG & base & & EWG\\ OH & \vdots & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

by the proper electrophilic functionality and its base treatment might result in the unprecedented ring-closing reaction via intramolecular trapping of the allenic/propargylic anion 4 to form 1-ethynyl-1-sulfonyl substituted carbocycles 5 (Scheme 2). To the best of our knowledge, a reaction based on such

Scheme 2. Ring-Closing Reaction of Allenyl/Propargyl Anion

a consideration has not yet been reported.^{3–6} We now report a novel ring-closing reaction based on the easy abstraction of the γ -allenic proton activated by the sulfonyl and other EWGs.

We first examined the construction of a three-membered ring from 1-(phenylsulfonyl)-1-(tosyloxyethyl)allene (6a). Thus, a 0.1 M THF solution of 6a was treated with a commercially available 1.0 M THF solution of TBAF at 0 °C for 0.5 h to afford 1-ethynyl-1-(phenylsulfonyl)cyclopropane (7a) in 97% yield (Table 1, entry 1).7 Treatment with NaH produced a similar result (entry 2). Interestingly, the ring-closing product was obtained in 71% yield even using K₂CO₃, although a fairly prolonged reaction time was needed (46 h, starting material 17% recovery) (entry 3). No reaction occurred when triethylamine was used (entry 4). The ring-closing conditions, which provided excellent results for the formation of the cyclopropane skeleton, could not be applied to the construction of the six-membered one. Indeed, the reaction of tosyloxypentylallene 6b with NaH in THF formed the cyclohexane derivative 7b in only 17% yield (entry 5). The use of DMF as a solvent resulted in a similar level of efficiency, though consumption of the starting material was markedly fast (entry 6). Changing the leaving group from the tosyloxy to iodo group brought about a drastic improvement in the chemical yield. Upon treatment of iodopentylallene **6b'** with NaH, the reaction in DMF at 0 °C (condition A) smoothly proceeded to give the cyclohexane derivative 7b in 92% yield (entry 8). TBAF in DMF at 0 °C (condition B) was also effective for this conversion (91% yield) (entry 9), but the use of THF at 0 °C gave poor results (entry 7). These two conditions (conditions A and B) could be applicable for the construction of not only the five-

Table 1. Ring-Closing Reaction of Allenes 6

$$\begin{array}{c|c} & & & \\ X & \vdots & & \\ \hline & & \\ \hline & & & \\ \hline & &$$

	substrate				
entry	6	n	X	conditions	yield of 7 (%)
1	6a	1	OTs	TBAF, THF, 0 °C, 0.5 h	97
2	6a	1	OTs	NaH, THF, 0 °C, 0.5 h	94
3	6a	1	OTs	K_2CO_3 , THF, 0 °C \rightarrow rt, 46 h	71^a
4	6a	1	OTs	Et ₃ N, THF, 0 °C \rightarrow rt, 24 h	b
5	6b	4	OTs	NaH, THF, 0 °C, 6 h	17
6	6b	4	OTs	A, 0.5 h	21
7	$\mathbf{6b}'$	4	I	NaH, THF, 0 °C, 5 h	30
8	$\mathbf{6b}'$	4	I	A, 0.5 h	92
9	$\mathbf{6b}'$	4	I	B, 0.5 h	91
10	6c	3	I	A, 0.5 h	quant
11	6c	3	I	B, 0.5 h	90
12	6d	2	I	A, 0.5 h	88
13	6d	2	I	B, 0.5 h	87
14	6e	5	I	B, 0.5 h	53
15	6e	5	I	A, 0.5 h	51
16	6e	5	Ī	$A,0.5~\mathrm{h}^c$	85

^a Starting material 6a was recovered in 17% yield. ^b Starting material 6a was recovered in 96% yield. ^c Reaction was performed in 0.01 M solution.

2550 Org. Lett., Vol. 9, No. 13, 2007

membered ring but also a four-membered one (entries 10–13). Furthermore, the efficient formation of a seven-membered ring was achieved under a diluted condition (0.01 M) (entry 16). The eight-membered carbocycle, however, was not obtained under any conditions.

To establish the availability of the allenic/propargylic anion, generated by treatment with a base, we extended the present protocol to sulfonylallenes having an aldehyde moiety as an electrophilic partner (Table 2). While the reaction of

Table 2. Ring-Closing Reaction of Allenes 8

	substrate			yield of 9 (%)	
entry	8	n	conditions	(cis:trans)a	
1	8a	4	NaH, DMF, 0 °C	b	
			(condition A)		
2	8a	4	NaH, DMF, −78 °C	81	(5:4)
3	8a	4	K_2CO_3 , DMF, 0 °C	85	(3:1)
4	8a	4	DBU, DMF, 0 °C	85	(2:1)
5	8a	4	LHMDS, THF, -78 °C	37	(2:1)
6	8a	4	tBuOK, THF, -78 °C	80	(5:1)
7	8a	4	TBAF, DMF, 0 °C	92	(5:1)
			(condition B)		
8	8a	4	TBAF, DMF, −20 °C	88	(5:1)
9	8a	4	TBAF, DMF, −40 °C	85	(5:1)
10	8a	4	TBAF, DMF, −60 °C	73	(3:4)
11	8a	4	TBAF, THF, 0 °C	90	(3:1)
12	8a	4	TBAF, CH ₂ Cl ₂ , 0 °C	90	(5:2)
13	8a	4	TBAF, toluene, 0 °C	92	(2:1)
14	8 b	3	condition B	c	
15	8 b	3	TBAF, DMF, −40 °C	62	(1:0)
16	8 b	3	TBAF, DMF, −60 °C	69	(1:0)

 a The ratio was determined by 1 H NMR. b Compound 9 could not be detected in the product mixture. c Aldehyde 10 was obtained as an isolatable product in 26% yield.

the allenyl aldehyde 8a under condition A afforded an intractable mixture, the same conditions at a lower temperature (-78 °C) led to the production of the desired

2-ethynylcyclohexanol 9a in a 5:4 ratio of cis and trans isomers⁸ (entries 1 and 2). The use of K₂CO₃ and DBU also gave 9a in a high yield with a modest selectivity, respectively (entries 3 and 4). The anticipated chelation-controlled synthesis of **9a** with the metal bis(trimethylsilyl)amide could not be realized (entry 5). The highest selectivity (5:1) was attained using tBuOK in THF at -78 °C and condition B (entries 6 and 7). The lower temperature $(-60 \, ^{\circ}\text{C})$ under condition B brought about the reverse stereoselectivity (entries 8–10). This temperature-dependent stereoselectivity for the reaction with TBAF in DMF indicates that cis-9a must be the thermodynamic product under this condition. In fact, the mixture of products [Table 2, entry 10 (cis-9a/ trans-9a = 3:4)] was exposed to TBAF in DMF at 0 °C (condition B) to give a mixture of cis-9a and trans-9a in a ratio of 5:1, which is similar to the product ratio observed in entry 7 (Scheme 3). Less polar solvents (THF, CH₂Cl₂,

Scheme 3. Recyclization of **9** under Condition B

toluene) provided rather low selectivities (entries 11–13). When the one-carbon shorter **8b** was exposed to condition B, cyclopentenecarbaldehyde **10**, presumably formed via the addition of an aldehyde enolate to the allene in an endomode ring-closing manner, ^{2a,c,e-h,k,n} was obtained in 26% yield instead of the expected cyclopentanol **9b** (entry 14). Lowering the reaction temperature to –40 or –60 °C resulted in the selective production of *cis-***9b** as a single stereoisomer in good yields (entries 15 and 16). Because *cis-***9b** was isomerized to **10** under condition B, the relation between **9b** and **10** would be rationalized in terms of an equilibrium between anions **A** and **B** as shown in Scheme 4, where the

Scheme 4. Equilibrium between Some Anion Species

SO₂Ph

SO₂Ph

B

SO₂Ph

SO₂Ph

SO₂Ph

I

SO₂Ph

I

SO₂Ph

I

I

SO₂Ph

I

SO₂Ph

II

SO₂Ph

II

SO₂Ph

II

SO₂Ph

II

SO₂Ph

allenyl/propargyl anion $\bf A$ kinetically attacks the aldehyde moiety, whereas $\bf 10$ must be the thermodynamically controlled product.

The reaction of the α,β -unsaturated ester-containing substrates 11 was the next subject to examine. For the

Org. Lett., Vol. 9, No. 13, 2007

⁽³⁾ For the generation and reaction of allenyl/propargyl anions, see: (a) Marshall, J. A.; Gung, B. W.; Grachan, M. L. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004, Vol. 1, Chapter 9. (b) Back, T. G. *Tetrahedron* **2001**, 57, 5263—5301. (c) Pasto, D. J. *Tetrahedron* **1984**, 40, 2805—2827. (d) Schuster, H. F., Coppola, G. M., Eds. *Allenes in Organic Syntheses*; Wiley: New York, 1984. (e) Epsztein, R. In *Studies in Organic Chemistry* 5, *Comprehensive Carbanion Chemistry*, *Part B*; Buncel, E., Durst, T., Eds.; Elsevier: Amsterdam, The Netherlands, 1984; Chapter 3.

⁽⁴⁾ Baudin reported the intermolecular trapping of anions, derived from allenyl sulfoxides and methyl lithium, with some electrophiles: Baudin, J. B.; Julia, S. A.; Lorne, R. *Bull. Soc. Chim., Fr.* **1992**, *129*, 440–456.

⁽⁵⁾ Padwa reported the intermolecular reaction of 1-methyl-1-(phenyl-sulfonyl)allene with methyl vinyl ketone in the presence of sodium benzenesulfinate resulting in the formation of 5-methyl-5-(phenylsulfonyl)-hept-6-yn-2-one. This result could be interpreted on the basis that the benzenesulfinate anion acted as a base and the resulting propargyl anion underwent conjugate addition with methyl vinyl ketone: Padwa, A.; Yeske, P. E. *J. Org. Chem.* **1991**, *56*, 6386–6390.

transformation of **11** into the corresponding cyclohexane derivative **12**, tBuOK was shown to afford high yields as well as a high stereoselectivity of the ring-closing products **12** (Scheme 5). It is noteworthy that (Z)-**11** showed higher diastereoselectivity than (E)-**11**.

Scheme 5. Ring-Closing Reaction of α,β -Unsaturated Esters

MeO₂C
$$\stackrel{\text{J}}{=}$$
 $\stackrel{\text{J}}{=}$ $\stackrel{\text{J}}{$

Finally, the effect of the substituents at the allenic position was studied under conditions A and B using iodoallenes 13. While the result obtained using the benzoyl group substituted allene 13a was in good accordance with those of 6c, the ester group substituted 13b provided a rather low yield

Scheme 6. Ring-Closing Reaction of Allenes 13

(Scheme 6). For the benzylallene 13c, the elimination of hydrogen iodide mainly occurred and no ring-closing product was obtained at all. These results strongly suggest that the electron-withdrawing ability of the α -substituent on the allenyl moiety must play an important role in this ring-closing reaction

In conclusion, we have described that the sulfonylallenes could be deprotonated by a mild base, exemplified by TBAF, to form the allenic/propargylic anion species, which subsequently reacts with an electrophilic partner such as the haloalkyl group, aldehyde, or α,β -unsaturated ester. In addition, other substituents bearing a strong electron-withdrawing ability comparable to the sulfonyl group were found to be used for this novel ring-closing reaction.

Acknowledgment. This work was supported in part by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for which we are grateful.

Supporting Information Available: Experimental procedures for preparation and ring-closing reaction of allenes, characterization data for compounds **6–14**, and their ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0709329

2552 Org. Lett., Vol. 9, No. 13, 2007

⁽⁶⁾ Miesch reported the intramolecular reaction of the propargyl anion, derived from the conjugated acetylenic ester, with the carbonyl function, see: (a) Wendling, F.; Miesch, M. *Org. Lett.* **2001**, *3*, 2689–2691. (b) Mota, A. J.; Klein, A.; Wendling, F.; Dedieu, A.; Miesch, M. *Eur. J. Org. Chem.* **2005**, 4346–4358.

⁽⁷⁾ TBAF treatment of 1-(phenylsulfonyl)-1-(tosyloxymethyl)allene afforded 2-(phenylsulfonyl)but-1-en-3-yne via 1,4-elimination in 87% yield. Similar reaction using 1-(acetoxymethyl)-1-(phenylsulfinyl)allene and triethylamine was reported by Bridges and Fischer: Bridges, A. J.; Fischer, J. W. J. Chem. Soc., Chem. Commun. 1982, 665–666.

⁽⁸⁾ The stereochemical assignments were made by a ¹H NMR consideration. A NOE experiment with 2-vinylcyclohexyl acetate possessing a trans relationship between ethynyl group and hydroxy functionality, which was derived from *trans-9a* by acetylation and Lindlar reduction, showed an enhancement between the vinyl protons and H-1 of the cyclohexane ring, while the corresponding vinyl derivative, prepared from *cis-9a*, showed no enhancement.

⁽⁹⁾ The stereoselectivity observed during the production of cis-12 from (Z)-11 was significantly higher than that from (E)-11. Investigation of the stereoselectivity for this transformation is currently underway.